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Exploring conformational spaces is still a challenging task for simulations of complex systems. One way to
enhance such a task is weighted sampling, e.g., by assigning high weights to regions that are rarely sampled.
It is, however, difficult to estimate adequate weights beforehand, and therefore adaptive methods are desired.
Here we present a method for adaptive weighted sampling based on Bayesian inference. Within the framework
of Bayesian inference, we develop an update scheme in which the information from previous data is stored in
a prior distribution which is then updated to a posterior distribution according to new data. The method
proposed here is particularly well suited for distributed computing, in which one must deal with rapid influxes
of large amounts of data.
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I. INTRODUCTION

In computer simulations of high-dimensional systems,
such as liquids or macromolecules, it is often extremely dif-
ficult to thoroughly sample an entire configurational space of
interest. One way of enhancing such sampling is to perform
a set of simulations in which each simulation samples, by
means of weighting, only a subspace; the entire space of
interest is then covered by the union of the subspaces
sampled in each simulation. To estimate relevant quantities
from such simulations, one needs to combine data from
simulations that used different weights, which is by no
means a trivial task.

Ferrenberg and Swendsen �1� derived a method for opti-
mally combining differently weighted histograms by mini-
mizing an error estimate. This method is now commonly
known as the weighted histogram analysis method
�WHAM�. The WHAM has become a ubiquitous tool for
Monte Carlo and molecular dynamics simulations. One area
where the WHAM has proven to be particularly useful is the
analysis of umbrella sampling simulations, where weighted
sampling is performed along a coordinate �or a set of coor-
dinates� of interest �2,3�. The WHAM has also been used for
combining simulation data obtained at different temperatures
�4�.

One crucial ingredient for a successful weighted-sampling
simulation is to choose an efficient weighting scheme. Since
it is difficult to guess an efficient weighting scheme before
seeing any data, the need for an adaptive method is evident.
The idea of adaptation is to continuously update the weight-
ing scheme as new data are obtained; as more and more data
are gathered, the weighting scheme becomes more efficient
and estimates of parameters converge to the true values. Bar-
tels and Karplus �BK� suggested an adaptive WHAM in such
context �5�. Their method, however, requires analyzing all
the data gathered up to the point where an update is per-
formed, which could become quite demanding as the amount
of data grows. During the revision of the manuscript, we
were informed of other previous works concerning adaptive
determination of weights �6–9�. Notably, the work of Smith
and Bruce �6� adopted a Bayesian approach.

Here we present an adaptive Bayesian WHAM
�ABWHAM�. By following the framework of Bayesian in-

ference, this method is able to perform a fast update using
only the new data gathered since the last update. Another
advantage is that, as in any Bayesian methods, it yields dis-
tributions of parameters from which error estimates can be
obtained in a consistent manner. Below we describe the
method, illustrate it using simple systems, and discuss its
advantage over previous methods and its potential use in
distributed computing.

II. THE METHOD

A. Motivation for Bayesian inference

Consider a system that can be in K different states, and let
�i be the probability for the ith state ��1+ ¯ +�K=1�. We
want to estimate the parameters �i by means of weighted
sampling. Typically, probabilities are related to free energies;
in umbrella sampling, for example, �i�exp�−Fi /kBT� where
Fi is the potential of mean force at the ith bin along the
reaction coordinate, and for simulated tempering �10,11�,
�i�exp�−Fi /kBTi� where Fi is the free energy at the ith
temperature Ti.

We seek an adaptive weighted sampling scheme as out-
lined in Fig. 1. Based on the estimates �i

�n−1� from the previ-
ous iteration step, new weights wi

�n� are determined in a way
that leads to efficient sampling of states. How exactly wi

�n� is
determined from �i

�n−1� may differ case by case, but one natu-
ral choice is to set wi

�n�=1/�i
�n−1� in order to ensure uniform

sampling of the states. Weighted sampling is then performed
with the new weights, and a histogram hi

�n� �the number
of observations of each state� is recorded. From the new

FIG. 1. The scheme for adaptive weighted sampling.
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histogram hi
�n�, new estimates �i

�n� are obtained, which com-
pletes a cycle. It is this last step where the WHAM is needed.
The cycle of adaptation, sampling, and analysis is iterated
starting with an initial guess �i

�0�.
One way of performing the WHAM in the context of

adaptive weighting is to shove all the available data into the
WHAM, i.e.,

�w�1�,h�1��, . . . ,�w�n�,h�n�� → ��n� �1�

which is the approach taken by BK �5�. Symbols with sup-
pressed subscripts collectively denote entire sets of variables,
e.g., w�1���w1

�1� , . . . ,wK
�1��, ��n����1

�n� , . . . ,�K
�n��, etc. In this

approach, accordingly, the cost of the WHAM calculation at
each iteration step increases linearly with n, the iteration
number. Although the computational bottleneck is usually in
the generation of data �e.g., molecular dynamics simulations�
rather than the analysis, this feature is certainly not attrac-
tive, especially for distributed computing where one has to
deal with rapid influxes of large amounts of data. We will
discuss further about distributed computing in Sec. IV.

Therefore, we attempt to develop a method in which only
new data are needed for the update of estimates. Namely, we
seek a way to determine a new estimate ��n� from the knowl-
edge of the new histogram h�n�, the new weight w�n�, and the
previous estimate ��n−1�:

���n−1�,w�n�,h�n�� → ��n�. �2�

At this point, it is already evident that point estimates of �
will not suffice, because they do not signify uncertainties of
estimates. With given ���n−1� ,w�n� ,h�n��, the new estimate ��n�

should not be very different from ��n−1� if ��n−1� was already
obtained from a large amount of data �i.e., after many itera-
tions of weighted sampling�, whereas it can be very different
from ��n−1� if only a small amount of data were used for the
estimation of ��n−1�. With point estimates, ��n� will be the
same in both cases because point estimates do not contain
the information of how much data were used to obtain
them. We need distributions, not just point estimates, which
naturally leads to Bayesian inference.

B. General framework based on Bayesian inference

In Bayesian probability theory, a probability means a state
of knowledge or a degree of belief �12�. In an abstract form,
Bayesian inference operates as

P�p�d� =
P�d�p�P�p�

�p�
P�d�p��P�p��

, �3�

where p represents a set of parameters that we want to esti-
mate and d represents data. This equation is known as Bayes’
rule; P�d � p� is called the likelihood, P�p� the prior probabil-
ity �or simply “prior”�, and P�p �d� the posterior probability
�or simply “posterior”�. Namely, Bayesian inference updates
the estimate of parameters, from the prior to the posterior,
based on the data. The denominator in Eq. �3� can be con-
sidered a normalization constant, and Bayes’ rule can be
written as

P�p�d� � P�d�p�P�p� �4�

under the implication that the proportionality constant is to
be determined by �pP�p �d�=1.

In the case of the adaptive WHAM, we want to estimate
the parameters ����1 , . . . ,�K� for K states. Let f �n���� de-
note the probability of � after n iterations of weighted
sampling:

f �n���� � P���w�n�,h�n�, . . . ,w�1�,h�1�� . �5�

As a function of �, f �n���� is the distribution that represents
the estimate of � after n iterations �in cases where states are
are continuous, f �n���� is essentially a distribution of a distri-
bution�. Our goal is to find a way to perform the update

�f �n−1����,w�n�,h�n�� → f �n���� . �6�

This is analogous to the update in Eq. �2�, but we are now
updating distributions of � instead of � itself. In the context
of Bayesian inference, f �n−1���� and f �n���� can be considered
the prior and the posterior, respectively, for the update at the
nth iteration step. Therefore, using Bayes’ rule �Eq. �4�� we
find

f �n���� � P�h�n���,w�n��f �n−1���� . �7�

A more rigorous derivation is given in Appendix 1.
The likelihood P�h �� ,w�, which plays a central role in the

Bayesian update �Eq. �7��, is the probability of obtaining the
histogram h from a weighted sampling given the state
probability � and the weight w. Let us define weighted state
probabilities

�i �
wi�i

� j
wj� j

. �8�

A weighted sampling of � is then identical to an unweighted
sampling of �. Therefore, assuming that the histogram is
collected from statistically independent measurements, the
likelihood is given as a multinomial distribution

P�h��,w� =
H!

h1 ! ¯ hK!
�1

h1
¯ �K

hK �9�

or in terms of the original state probability �,

P�h��,w� =
H!

h1 ! ¯ hK!

�w1�1�h1
¯ �wK�K�hK

�w1�1 + ¯ + wK�K�H , �10�

where H�h1+ ¯ +hK. The Bayesian update equation �7�
along with the likelihood �Eqs. �9�, �10�� constitutes the
framework of the ABWHAM.

C. Bayesian inference using conjugate priors — weighted
Dirichlet distributions

In the previous section, we laid out the general framework
of the ABWHAM. In order to make it practical, however, we
need to represent the distribution f��� in a parametric form.
For that purpose, we employ the notion of the conjugate
prior. A conjugate prior is a family of prior distributions, or a
member therein, that share the same parametric form and
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whose corresponding posterior distributions also belong to
that same family. In the context of the Bayesian update �Eq.
�7��, if we have a conjugate prior f �n−1����, the corresponding
posterior f �n���� will have the same parametric form as
f �n−1���� and we can formulate the Bayesian update as an
update of a set of parameters, instead of an update of a
function.

The likelihood for our Bayesian update is a multinomial
distribution when it is written in terms of � �Eq. �9��. It is
well known that Dirichlet distributions

fD��;�� �
1

B���
�1

�1−1
¯ �K

�K−1��� j
� j − 1� ,

B��� �
���1� ¯ ���K�

��A�
, A � �1 + ¯ + �K �11�

form a conjugate prior family for a sampling process whose
likelihood is a multinomial distribution �13�. The parameters
����1 , . . . ,�K� uniquely specify a K-state Dirichlet distri-
bution. The normalizing constant B��� is known as the beta
function. Some properties of the Dirichlet distribution, which
we will be using here, are derived in Appendix 2. By trans-
forming � back to the original state probability �, we obtain
the corresponding distribution of �,

fWD��;�,w� = � ��

��
� 1

B���
�w1�1��1−1

¯ �wK�K��K−1

�w1�1 + ¯ + wK�K�A−K

���� j
� j − 1� �12�

which we call a “weighted” Dirichlet distribution. Fortu-
nately, the explicit form of the Jacobian ��� /��� is not
needed in developing our method.

It is straightforward to verify that weighted Dirichlet
distributions are indeed conjugate priors for our Bayesian
update. Suppose that f �n−1���� is a weighted Dirichlet
distribution with respect to the weights w�n�: f �n−1����
= fWD�� ;��n−1� ,w�n��. Then, from Eqs. �7�, �10�, and �12�, the
posterior is given as f �n����= fWD�� ;��n� ,w�n��, where � is
updated as

�i
�n� = �i

�n−1� + hi
�n�. �13�

D. Mapping between weighted Dirichlet distributions — the
relative entropy

The difficulty, however, is that the likelihood �Eq. �10��
depends on the weights which change from one iteration step
to another. Thus, even if f �n−1���� is a conjugate prior for the
nth iteration step, the resulting posterior f �n���� will not be a
conjugate prior for the �n+1�-th iteration step unless the
weights are identical between the nth and �n+1�-th iteration
steps. Accordingly, the Bayesian update chain cannot pro-
ceed beyond one cycle. This is in fact the trickiest problem in
developing a Bayesian update scheme for adaptive weighted
sampling.

Our solution to this problem is to devise a mapping
between weighted Dirichlet distributions

fWD��;�,w� → fWD��;��,w�� , �14�

where �� is the unknown. Given a weighted Dirichlet distri-
bution fWD�� ;� ,w� and a new weight w�, we want to find a
weighted Dirichlet distribution fWD�� ;�� ,w��, with respect
to the new weight, that is closest to the original distribution
fWD�� ;� ,w�. In other words, we want to map a Dirichlet
distribution in �i�wi�i /� jwj� j to a Dirichlet distribution in
�i��wi��i /� jwj�� j �14�.

In order to formulate such a mapping, we need to quantify
how close one distribution is to another. For this purpose, we
choose the relative entropy �also known as the Kullback-
Leibler divergence� which is a commonly used metric for
distances between distributions �15�. For the two distribu-
tions at hand, f���� fWD�� ;� ,w� and f����� fWD�� ;�� ,w��,
the relative entropy is defined as

D�f	f�� � 
 d�f���ln
f���
f����

. �15�

Notice that the relative entropy is not symmetric: D�f 	 f��
�D�f� 	 f�. We choose D�f 	 f�� because it immensely simpli-
fies the algebra. The mapping �Eq. �14�� inevitably intro-
duces an approximation, as it approximates a Dirichlet dis-
tribution in � with a Dirichlet distribution in ��. The choice
of D�f 	 f�� over D�f� 	 f�, or over the symmetric form
1
2 �D�f 	 f��+D�f� 	 f��, is essentially a choice of one approxi-
mation over another for the sake of the simplicity of the
algebra.

By minimizing the relative entropy with respect to ��, we
find

�ln �i�� f� = �ln �i�� f , �16�

where �¯� f denotes an average with respect to the
distribution f , or equivalently,

	��i�� − 	�A�� =
 d�fD��;��ln
wi�wi

−1�i

� j
wj�wj

−1� j

, �17�

where 	�x�� d
dx ln ��x� is the digamma function and

A���1�+ ¯ +�K� . A detailed derivation is given in Appendix
3.

Equation �17� provides K equations that determine the K
unknowns �1� , . . . ,�K� and thereby determine the mapping be-
tween weighted Dirichlet distributions. Solving Eq. �17� is,
however, quite demanding. One has to evaluate the integral
on the right hand side and then solve the equation
involving the digamma function. Neither step can be done
analytically; therefore, we turn to a heuristic approach.

E. Mapping between weighted Dirichlet distributions — a
heuristic approach

We observe that a Dirichlet distribution fD�� ;�� is

uniquely determined by the mean values �̄i=�i /A �see Ap-
pendix 2� and A. �Due to the constraint � j�̄ j =1, the mean
values provide only K−1 independent conditions.� The mean
values signify where the center of the distribution is located,
and the value of A signifies how broad the distribution is. We

BAYESIAN UPDATE METHOD FOR ADAPTIVE WEIGHTED… PHYSICAL REVIEW E 74, 066703 �2006�

066703-3



call A the “confidence” since a bigger A indicates a narrower
distribution, hence more confidence in estimates.

We also observe that as more and more data are gathered
from adaptive weighted sampling, the distribution f���
that represents the estimate of � will become narrower. Thus,
we would prefer heuristic schemes that are accurate for
narrow distributions, although possibly inaccurate for broad
distributions, to the ones that behave in the opposite way.

Based on these observations, we construct a heuristic
scheme for the mapping of Eq. �14� as follows. We start with
the zero-dispersion limit. At this limit, the means, �̄���� f

and �̄������ f�, obey the same relationship that � and ��
obey. Therefore, recalling the relationship between � and ��,
we find

�̄i� =
ui�̄i

� j
uj�̄ j

, ui � wi�wi
−1 �18�

which provides K−1 independent conditions. In fact, it is
crucial that the means are not sufficient to determine a Di-
richlet distribution. Recall that the motivation for using dis-
tributions instead of point estimates was to encode uncer-
tainty in estimates. If the means alone determined a Dirichlet
distribution, it would contradict the whole purpose of using
distributions.

To obtain the last condition, i.e., to determine the confi-
dence A�, we must go beyond the zero-dispersion limit.
Here, we again employ the principle of minimizing the rela-
tive entropy. Now that A� is the only unknown left, we mini-
mize the relative entropy �Eq. �15�� with respect to A�, and
obtain

�i
�̄i��ln �i�� f� = �i

�̄i��ln �i�� f . �19�

A derivation is given in Appendix 3. The relationship be-
tween Eq. �19� and Eq. �16� is apparent: Eq. �19� �a single
equation� is the average of Eq. �16� �K equations� with re-
spect to �̄�. Just as solving Eq. �16� is demanding, so is
solving Eq. �19�. Therefore, we seek an approximate solution
by expanding Eq. �19� around the zero-dispersion limit.
Keeping only the leading order, we find �see Appendix 4�

A� =
K − 1

2�D1 + D2�
− 1,

D1 � �i

�̄i��1 − �̄i�

2�A + 1��̄i

,

D2 �
�i�j

uiuj�̄i�̄ j − �i
ui

2�̄i�1 − �̄i�

2�A + 1��i,j
uiuj�̄i�̄ j

. �20�

With A� at hand, we can completely determine �� by

�i� = A��̄i�. �21�

Equations �18�, �20�, and �21� constitute our heuristic
scheme for the mapping between weighted Dirichlet
distributions.

F. The algorithm

In some cases, the numerical precision of the variables
that store state probabilities and weights could be an issue.
This is because probabilities may be exponentially different
among states �in statistical mechanical systems, probabilities
are governed by the Boltzmann factor�. Therefore, we
suggest working with logarithms


i � ln �i + C1, gi � ln wi + C2. �22�

C1 and C2 are arbitrary constants. The presence of C2 is easy
to understand; wi is only defined up to a multiplicative con-
stant. The presence of C1 means that we are interested in
ln �i only up to an additive constant, which is indeed the case
in many applications where free energies or potentials of
mean force are the main quantities of interest. If desired, of
course, C1 can be determined by the normalization � j� j =1.
Here, however, we simply choose these arbitrary constants
such that the averages of 
 and g over the states equal zero:

1

K
� j


 j = 0,
1

K
� j

gj = 0. �23�

We now summarize the algorithm of the ABWHAM.
�0� Initial setup: �i� Choose an initial guess 
guess. Without

any prior information about the system, one might simply
take 
i

guess=0. �ii� Set the initial weight as gi=−
i
guess. �iii�

Set �i=1. This amounts to choosing an initial distribution
f���= fWD�� ;� ,w� as the uniform distribution under the
weighting wi�exp�gi�. In general, unless the initial guess
was obtained from a significant amount of information, a
broad distribution �small � values� must be chosen in order
to ensure that the resulting estimates will be dominated by
the data rather than the initial guess. �iv� Set the initial point
estimate as 
̄i=
i

guess. �v� Set 
i
ref= 
̄i.

�1� Adapt the weights

gi
new = − 
̄i +

1

K
� j


̄ j . �24�

�2� Perform weighted sampling with wi
new�exp�gi

new� and
obtain a histogram h. Depending on the problem at hand, this
step is done through various simulation techniques such as
umbrella sampling, simulated tempering, etc.

�3� Map between weighted Dirichlet distributions:
�� ,g�→ ��� ,gnew�. Determine �� by the heuristic scheme
�Eqs. �18�, �20�, and �21��

�i� = A��̄i�, �25�

where

�̄i� =
ui�̄i

� j
uj�̄ j

,

�̄i = �i/A, A = � j
� j , �26�

ui = exp�gi
new − gi�

and
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A� =
K − 1

2�D1 + D2�
− 1,

D1 = �i

�̄i��1 − �̄i�

2�A + 1��̄i

, �27�

D2 =
�i�j

uiuj�̄i�̄ j − �i
ui

2�̄i�1 − �̄i�

2�A + 1��i,j
uiuj�̄i�̄ j

.

�4� Perform the Bayesian update: ��� ,h�→�. Determine
� by

�i = �i� + hi. �28�

�5� Calculate new point estimates


̄i = ln �i − gi
new −

1

K
� j

�ln � j − gj
new� . �29�

Notice that although we deal with distributions throughout
our method, we need point estimates here in order to decide
on the weights; we choose the mean for this purpose. Also
notice that, in line with our heuristic mapping scheme, we
simply relate means of different variables at the zero-
dispersion limit.

�6� If maxi � 
̄i−
i
ref � ��, then refresh: set �i=1, gi=−
̄i,

and 
i
ref= 
̄i. Otherwise, set gi=gi

new. � is a predetermined
constant.

�7� Go to step �1�. Repeat a given number of times or until
desired precision is achieved for relevant quantities, e.g., � or

.

In step �6�, we introduced a refresh procedure, which de-
serves explanation. Our method uses a mapping �step �3��
between weighted Dirichlet distributions, which is an ap-
proximation. If 
guess is close to the true value 
true, the
weights will not change very much throughout the iteration
procedure and the mapping will be a good approximation.
On the other hand, if 
guess is far from 
true, the weights will
change a lot and the approximation will break down. Notice
that this is due to the approximate nature of the mapping �Eq.
�14�� itself; even if we directly solve Eq. �16� instead of
using the heuristic scheme, the same issue will persist. In this
step, we check whether 
̄ has significantly deviated from 
ref

and, if it has, return to a uniform distribution as if starting
anew with 
̄ as an initial guess. There is no strict rule on
how to choose �, but we have found that values between 1
and ln 10 yield reasonable performance. Smaller values of �
lead to fast and noisy convergence while larger values lead to
slow and smooth convergence. In the illustration section, we
show results for �=1.

III. ILLUSTRATIONS

Using two simple models, we illustrate our method and
compare it to the BK method. These two simple models rep-
resent two drastically different situations. In the first model,
the state probabilities are more or less within the same order
of magnitude, which represents an easy case. The second

model represents a much more challenging case where state
probabilities are different from each other by many orders of
magnitude. We also show an application of our method to a
simulated tempering simulation of Ala10 �decamer of
alanine�.

A. Model 1

Let us consider a seven-state model whose states have the
following free energies �measured in kBT� associated with
them:

− 
true = − 2,−
3

2
,− 1,0,1,

3

2
,2� . �30�

Recall that the state probabilities �i are related to 
i by Eq.
�22�. In this model, the ratio between the largest and
the smallest probabilities is only �1 /�7=exp�4��55. Thus,
one can expect to get decent estimates for free energies
even without any weighting. Nevertheless, we examine how
adaptive weighting works in this case.

Starting with the initial guess 
i
guess=0, we performed

adaptive weighted sampling following the algorithm outlined
above. At each weighted sampling step, ten statistically
independent samples were drawn according to the probabili-
ties exp�
i

true+gi
�n�� /� j exp�
 j

true+gj
�n��. The cycle of adapta-

tion, sampling, and analysis was iterated 300 times. There-
fore, the total data amount to 3000 samples. The results are
summarized in Figs. 2 and 3.

Figure 2�a� shows how the point estimates −
̄i
�n� converge

to the true values as the iteration number n increases. The

FIG. 2. �Color online� Convergence of point estimates �model
1�. �a� Point estimates −
̄i

�n� obtained with the ABWHAM �red� are
compared to those obtained with the BK method �blue�. The true
values −
i

true are shown as dashed lines. �b� The confidence A�n�.
The last refresh step was executed at n=18.
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ABWHAM shows virtually the same convergence as the BK
method. Figure 2�b� shows the confidence A as a function of
n. Whenever the refresh step is executed, the confidence A
drops down to K=7, the number of states. We can compre-
hend the entire iteration process by dividing it into two parts
where the last refresh step was executed �n=18, in this ex-
ample�. The iterations before the last refresh step improve
the initial guess, and those after refine the posterior distribu-
tions. In this example, 
guess is already so close to 
true that
the refresh step is essentially immaterial; various choices of
the threshold �, as well as the ABWHAM without the re-
fresh step, lead to similar convergence. Only the results for
�=1 are shown here.

One advantage of Bayesian inference is that it yields dis-
tributions, not just point estimates, which contain informa-
tion about uncertainties of estimates. Especially, since we
have Dirichlet distributions of � �i.e., weighted Dirichlet
distributions of ��, distributions of any quantities that can
be derived from � or � can be obtained by sampling from
Dirichlet distributions, which is a straightforward process
�16�. Figure 3 shows distributions of −
i sampled from
f �n����= fWD�� ;��n� ,w�n�� at n=28 �Fig. 3�a�� and at n=300
�Fig. 3�b��. The convergence of the estimates is evident; the
free energies are not yet fully resolved at n=28, but they are
at n=300.

Since our distributions are obtained through approxima-
tions �the mapping between weighted Dirichlet distribu-
tions�, one may ask how accurately they represent the actual
uncertainty. To address this question, we sampled state prob-
abilities using a Monte Carlo technique as described in Ap-
pendix 5. This Monte Carlo sampling, although very expen-
sive, can possibly be considered the most faithful Bayesian
method. As can be seen in Fig. 3, there is no significant
difference between the distributions obtained with the AB-
WHAM and those obtained with the Monte Carlo technique.
Although it uses approximations, the ABWHAM still
produces more or less accurate distributions.

B. Model 2

The second model for illustration is another seven-state
model with free energies

− 
true = �− 50,− 48,− 40,10,30,48,50� . �31�

This model presents a much more challenging case than the
first one. The overall range of free energy that we must cover
is as large as 100 kBT �the ratio between the largest and the
smallest state probabilities is �1 /�7=exp�100��3�1043�,
while states 1 and 2 �and states 6 and 7� are only separated
by 2 kBT. This is, however, not an uncommon situation. The
resolution of kBT is often needed in free energy calculations,
and the range of 100 kBT is not too unrealistic either.

Again starting with the initial guess 
i
guess=0, we per-

formed adaptive weighted sampling in the same way as with
model 1 collecting ten samples per iteration over 300 itera-
tions �3000 samples total�. The results are summarized in
Figs. 4 and 5.

The point estimates for the free energies are plotted in
Fig. 4. The BK method and the ABWHAM with �=1 again
yield virtually the same convergence. Unlike in model 1,

guess is now so far from 
true that the convergence of the
ABWHAM is sensitive to the choice of the threshold �; with
�=ln�10� the convergence is slowed down by a factor of 1.5
�result not shown�. Overall, the refresh step is critical when
initial guesses are far off, because without it the convergence
would be too slow.

Figure 5 shows distributions of −
i obtained at n=89 and
n=300. At n=89, a couple of iterations after the final refresh
step, only 20 samples actually contribute to producing the
distributions; all the previous data are used only for improv-
ing the initial guess. The distributions at n=89, accordingly,
are rather broad �broader than those in Fig. 3�a��. That they
look sharp in Fig. 5�a� is due to the wide range of the free
energies in this model. Distributions get refined through
more iterations, and at n=300 we see that they are sharply
peaked at the true values �Fig. 5�b��. Again, we do not see
any significant difference between the distributions obtained
with the ABWHAM and those obtained with the Monte
Carlo posterior sampling.

C. Simulated tempering of Ala10

For a more realistic illustration, we have applied the
ABWHAM to a simulated-tempering �10,11� molecular

FIG. 3. Convergence of posterior distributions �model 1�. The
distributions of −
i sampled from f �n����= fWD�� ;��n� ,w�n�� ob-
tained with the ABWHAM �upright figures� are compared to those
obtained with the Monte Carlo posterior sampling �upside-down
figures�. Smooth curves were produced by the cubic spline interpo-
lation of histograms of 10 bins. The true values −
i

true are shown as
dashed lines. �a� n=28. �b� n=300.
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dynamics simulation of Ala10 peptide �capped with acetyl
and N-methyl groups� in vacuum �Fig. 6�. We chose seven
temperatures 300, 325, 352, 381, 413, 448, and 485 K. Tran-
sitions between neighboring temperatures were attempted
every 1 ps. Acceptance of a transition was decided based on
the Metropolis criterion using the potential energy; when a
transition was accepted, velocities were rescaled according to
the temperature change �17�. Between transitions, the system
was kept at a constant temperature using the Nose-Hoover
thermostat �18,19�. Molecular dynamics simulations were
performed with a modified version of GROMACS �20� in
which we implemented the simulated tempering algorithm.
Using the ABWHAM, we updated the weights for the tem-
peratures every 100 ps �100 transition attempts�, and iterated
the adaptation-sampling-analysis cycle for 100 times �10 ns
of total simulation time�. For comparison, we performed an-
other simulation where we used the BK method instead of
the ABWHAM.

In the above two simple models, by design there was
no time correlation in data, but that is not the case in
this example. A histogram of 100 correlated counts, obtained
at each iteration, does not contain the same amount of
information as a histogram of 100 uncorrelated �i.e., statisti-
cally independent� counts. Using histograms of correlated
counts without considering the correlation can lead to
underestimation of errors, although point estimates are usu-
ally not affected significantly. A commonly adopted way of
accounting for correlation is to reduce each count by a factor
=1+2� �� is the correlation time� before processing histo-
grams �3,4,21�. In general, determination of  is nontrivial

because the correlation time may depend on the weights that
change over the course of adaptive weighting. In this ex-
ample, we simply used a single value =10 �i.e., ten counts
are considered effectively equivalent to one statically inde-
pendent count� which seemed reasonable. We note that the
choice of  should not affect the comparison between the BK
method and the ABWHAM as the same  was used for both.

The results are shown in Figs. 7 and 8. Starting at the
initial guess 
i

guess=0, the point estimates 
̄ converge after
about 30 iterations. Just as in the above two simple models,
we see no significant difference in convergence between the
BK method and the ABWHAM �Fig. 7�, and no significant

FIG. 4. �Color online� Convergence of point estimates �model
2�. �a� Point estimates −
̄i

�n� obtained with the ABWHAM �red� are
compared to those obtained with the BK method �blue�. The true
values −
i

true are shown as dashed lines. �b� The confidence A�n�.
The last refresh step was executed at n=87.

FIG. 5. Convergence of posterior distributions �model 2�. The
distributions of −
i sampled from f �n����= fWD�� ;��n� ,w�n�� ob-
tained with the ABWHAM �upright figures� are compared to those
obtained with the Monte Carlo posterior sampling �upside-down
figures�. Smooth curves were produced by the cubic spline interpo-
lation of histograms of ten bins. The true values −
i

true are shown as
dashed lines. �a� n=89. �b� n=300.

FIG. 6. �Color online� Ala10 peptide in an �-helical form. Made
with VMD �25�.
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difference in posterior distributions between the ABWHAM
and the Monte Carlo posterior sampling �Fig. 8�. This is not
surprising at all. The Ala10 system is much more complicated
than the above two simple models, but the complication oc-
curs only in the sampling part of the adaptation-sampling-
analysis cycle. The different methods that we are comparing,
on the other hand, only affect the adaptation and analysis
parts. It is therefore expected that the complexity of the
Ala10 system is largely irrelevant to this comparison.

IV. CONCLUDING REMARKS

One of the possible applications of adaptive weighting is
simulated tempering �10,11�, as we illustrated above with
Ala10. Recently, its parallel version, replica exchange �22,17�
�also known as parallel tempering�, has received a lot of
attention. Replica exchange is commonly considered supe-
rior to simulated tempering, the reason being that replica
exchange does not require determination of weights. How-
ever, with an adaptive weighting scheme �such as the BK
method or the ABWHAM� determination of weights does
not have to be tedious. The need for weights, perhaps, should
not overshadow the advantages of simulated tempering. One
obvious advantage of simulated tempering over replica ex-
change is that it is naturally suited for distributed computing
because it does not require communications between CPUs.

Another possible application is the calculation of free en-
ergy along a parameter � �possibly multidimensional�, where
states are defined by a discrete set of � values, and simula-

tions are done in a similar way as simulated tempering, with
transitions between different � values instead of different
temperatures. In this case, the weights are by themselves
crucial quantities because they are directly related to the free
energy of interest. Therefore, adaptive weighting finds its
natural place. Furthermore, compared to other free energy
methods such as free energy perturbation, there may be ad-
vantages coming from making frequent transitions between �
values �10�. It will require further tests to assess the effi-
ciency of free energy calculations using adaptive weighting.

The ABWHAM is based on a Bayesian update scheme
that uses only the new data at each iteration step. The com-
putational cost of each iteration, therefore, does not increase
with the iteration number n; going from n=10 000 to 10 001
requires the same amount of computation as going from
n=1 to n=2. This is, along with the capability of producing
consistent error estimates, the main advantage of the AB-
WHAM over the BK method. One may argue that the sam-
pling part is usually the most costly part among the
adaptation-sampling-analysis cycle and that reducing the
computational cost for the adaptation and analysis parts will
not help much. This is a legitimate objection, but the situa-
tion is different for large scale computing such as distributed
computing. In distributed computing, the sampling part can
be distributed over many CPUs on the network, but the ad-
aptation and analysis parts must be done at a central CPU.

FIG. 7. �Color online� Convergence of point estimates �simu-
lated tempering of Ala10�. �a� Point estimates −
̄i

�n� obtained with
the ABWHAM �red� are compared to those obtained with the BK
method �blue�. �b� The confidence A�n�. The last refresh step was
executed at n=23.

FIG. 8. Convergence of posterior distributions �simulated tem-
pering of Ala10�. The distributions of −
i sampled from f �n����
= fWD�� ;��n� ,w�n�� obtained with the ABWHAM �upright figures�
are compared to those obtained with the Monte Carlo posterior
sampling �upside-down figures�. Smooth curves were produced by
the cubic spline interpolation of histograms of 10 bins. �a� n=25.
�b� n=100.
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Whenever a new set of data comes in, the central CPU up-
dates the weights and sends out new jobs with the updated
weights. Therefore, the central CPU must be able to handle
rapid influxes of data from all the CPUs on the network,
and the ABWHAM should be very useful in this type of
application.

In summary, we have developed a Bayesian update
method for adaptive weighted sampling based on an approxi-
mation using weighted Dirichlet distributions. Two most im-
portant features of the method, in contrast to the previous BK
method, are �i� that the computational cost of each iteration
does not increase with the iteration number because the up-
date scheme uses only the new data and �ii� that the method
also yields error estimates based on Bayesian inference. Tests
with simple systems indicate that, even though it is based
on an approximation, the ABWHAM shows virtually the
same convergence of point estimates as the BK method and
yields reasonable error estimates. The ABWHAM seems to
be an adequate alternative to the BK method, especially for
distributed computing, and we hope that it will find many
applications such as simulated tempering and free energy
calculations.
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APPENDIX

1. Derivation of the Bayesian update equation [Eq. (7)]

Let us start with the definition of f �n����:

f �n���� � P���w�n�,h�n�, . . . ,w�1�,h�1�� . �A1�

Applying Bayes’ rule to the �� ,h�n�� pair, we obtain

f �n���� � P�h�n���,w�n�,w�n−1�,h�n−1�, . . . ,w�1�,h�1��

� P���w�n�,w�n−1�,h�n−1�, . . . ,w�1�,h�1�� . �A2�

This expression can be further simplified by eliminating re-
dundant conditions. First, let us look at the first factor. When
� and w�n� are given, they completely determine the probabil-
ity of h�n�; all the previous data are redundant, and therefore
can be eliminated:

P�h�n���,w�n�,w�n−1�,h�n−1�, . . . ,w�1�,h�1�� = P�h�n���,w�n�� .

�A3�

For the second factor, w�n� is a redundant condition because,
without h�n�, w�n� itself has no implication on �:

P���w�n�,w�n−1�,h�n−1�, . . . ,w�1�,h�1��

= P���w�n−1�,h�n−1�, . . . ,w�1�,h�1��

= f �n−1���� �A4�

where the last equality comes from Eq. �A1�. Substituting

Eqs. �A3� and �A4� into Eq. �A2�, we obtain the Bayesian
update equation

f �n���� � P�h�n���,w�n��f �n−1���� . �A5�

2. Some properties of the Dirichlet distribution

Here we derive some properties of the K-state Dirichlet
distribution

fD��;�� �
1

B���
�1

�1−1
¯ �K

�K−1��� j
� j − 1� �A6�

that are used in this paper. All the following derivations are
based on the normalization equation

B��� =
���1� ¯ ���K�

��A�
=
 d��1

�1−1
¯ �K

�K−1��� j
� j − 1� ,

�A7�

where A��1+ ¯ +�K. First, we calculate the moments:

��1
n� =

1

B��� 
 d��1
�1+n−1�2

�2−1
¯ �K

�K−1��� j
� j − 1�

=
��A�

���1� ¯ ���K�
���1 + n����2� ¯ ���K�

��A + n�

=
�1��1 + 1� ¯ ��1 + n − 1�

A�A + 1� ¯ �A + n − 1�
�A8�

from which we obtain the mean

��1� =
�1

A
�A9�

and the variance

var��1� = ��1
2� − ��1�2 =

�1�A − �1�
A2�A + 1�

=
��1��1 − ��1��

A + 1
.

�A10�

In a similar manner, we calculate the covariance

��1�2� =
1

B��� 
 d��1
�1�2

�2�3
�3−1

¯ �K
�K−1��� j

� j − 1�
=

��A�
���1� ¯ ���K�

���1 + 1����2 + 1����3� ¯ ���K�
��A + 2�

=
�1�2

A�A + 1�
�A11�

cov��1,�2� = ��1�2� − ��1���2�

= −
�1�2

A2�A + 1�

= −
��1���2�
�A + 1�

. �A12�

Finally, we calculate the mean log
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�ln �1� =
1

B��� 
 d� ln �1�1
�1−1

¯ �K
�K−1��� j

� j − 1�
=

1

B���
�

��1

 d��1

�1−1
¯ �K

�K−1��� j
� j − 1�

=
1

B���
�

��1
B���

=
�

��1
ln B���

=
�

��1
�ln ���1� + ¯ + ln ���K�

− ln ���1 + ¯ + �K��

= 	��1� − 	�A� , �A13�

where 	�x�� d
dx ln ��x� is the digamma function. Although

we derived the above formulas for the first state, by symme-
try similar formulas can be written for any other states.

3. Minimization of the relative entropy

In this paper we use the minimization of the relative
entropy as a guiding principle for constructing a mapping
between weighted Dirichlet distributions. Here we find the
solutions for the minimization for two different cases.

The first case is where we are given a weighted Dirichlet
distribution f���� fWD�� ;� ,w� and a new weight w�
and want to find a new weighted Dirichlet distribution
f����� fWD�� ;�� ,w�� that minimizes the relative entropy
D�f 	 f�� shown in Eq. �15�. Thus, we calculate the derivative
of D�f 	 f�� with respect to ��:

�

��i�
D�f	f�� = −
 d�f���

�

��i�
ln f����

= −
 d�f���
�

��i�
�ln ���1� + ¯ + �K� �

− ln ���i�� + ��i� − 1�ln �i�� , �A14�

where we have used Eqs. �11� and �12�. Setting the
derivative to zero, we obtain

	��i�� − 	�A�� =
 d�f���ln �i� �A15�

which can be recast into Eq. �17� by changing the integration
variable from � to �, or into Eq. �16� by using Eq. �A13�.

The second case is where in addition to f��� and w�, the

means �̄i�=�i� /A� are also given; A� is the only unknown. By
replacing �i� with �̄i�A�, f���� can be written as

f���� = � ���

��
� ��A��

���̄1�A�� ¯ ���̄K�A��
�1�

��̄1�A�−1�
¯ �K�

��̄K�A�−1�

���� j
� j − 1� , �A16�

where �i�=wi��i /� jwj�� j. In a similar manner as in the first

case above, we take the derivative of D�f 	 f�� with respect to
A�:

�

�A�
D�f	f�� = � j

�̄ j�	��̄ j�A�� − 	�A�� − � j
�̄ j��ln � j�� f

= � j
�̄ j��	��̄ j�A�� − 	�A��� − � j

�̄ j��ln � j�� f

�A17�

and then set it to zero to obtain Eq. �19�.

4. Expansion of Eq. (19) around the zero-dispersion limit

Near the zero-dispersion limit, equations can be simplified
by exploiting the property that distributions are sharply
peaked. Here we expand Eq. �19�, namely,

�i
�̄i��ln �i�� f� = �i

�̄i��ln �i�� f �A18�

around the zero-dispersion limit.
First, let us expand �ln �i�� f� on the left hand side. Define

�i���i�− �̄i� to be the deviation from the mean. Then, the
expansion around the zero-dispersion limit amounts to the
expansion around �i�=0. Keeping up to the leading
nontrivial order, we find

�ln �i�� f� = �ln ��̄i� + �i��� f�

��ln �̄i� +
�i�

�̄i�
−

��i��
2

2��̄i��
2�

f�

= ln �̄i� −
varf���i��

2��̄i��
2

= ln �̄i� −
1 − �̄i�

2�̄i��A� + 1�
. �A19�

In the last line, Eq. �A10� was used.
�ln �i�� f on the right hand side is expanded in a similar,

although more complicated, manner:

�ln �i�� f =�ln
ui�i

� j
uj� j
�

f

�� ln
ui�̄i

� j
uj�̄ j

+
�i

�̄i

−
� j

uj� j

� j
uj�̄ j

−
�i

2

2�̄i
2

+
�� j

uj� j�2

2�� j
uj�̄ j�2�

f

, �A20�

where ui�wi� /wi and �i��i− �̄i. All these terms can
be calculated using the properties of the Dirichlet distribu-
tion described in Appendix 2. In particular, the last term is
calculated using
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��� j
uj� j�2� f

= �� j,k
ujuk� j�k� f

= � j
uj

2varf�� j� + � j�k
ujukcovf�� j,�k� .

�A21�

Collecting all the terms, we find

�ln �i�� f � ln
ui�̄i

� j
uj�̄ j

−
1 − �̄i

2�̄i�A + 1�

+
� j

uj
2�̄ j�1 − �̄ j� − � j�k

ujuk�̄ j�̄k

2�A + 1�� j,k
ujuk�̄ j�̄k

.

�A22�

Substituting Eqs. �A19� and �A22� into Eq. �A18� and
solving for A�, we obtain Eq. �20�.

5. Monte Carlo sampling of state probabilities

In Bayesian inference, Monte Carlo methods are often
employed for sampling parameters from posterior distribu-
tions �13�. In the context of weighted sampling, we are
interested in sampling the state probabilities �i from the
posterior

f �n���� = P���w�n�,h�n�, . . . ,w�1�,h�1��

� P�w�n�,h�n�, . . . ,w�1�,h�1����P��� , �A23�

where the likelihood is

P�w�n�,h�n�, . . . ,w�1�,h�1���� = �
m=1

n
H�m�!

h1
�m� ! ¯ hK

�m�!

�
�w1

�m��1�h1
�m�

¯ �wK
�m��K�hK

�m�

�w1
�m��1 + ¯ + wK

�m��K�H�m� .

�A24�

For the prior, let us assume 
i
guess=0 �i.e., wi

�0�=1� for
simplicity

f �0���� = P���

= fWD��;��0�,w�0�� = fD��;��0��

=
1

B���
�1

�1
�0�−1

¯ �K
�K

�0�−1��� j
� j − 1� , �A25�

where, typically, �i
�0�=1. In case wi

�0� are not uniform,
one can reformulate the entire problem in terms of
�i=wi

�0��i /� jwj
�0�� j, thereby turning the problem into one

with uniform initial weights.
Recently, Gallicchio et al.�4� suggested a method of

Monte Carlo posterior sampling in the context of weighted
sampling. However, we have found that that method does not
yield satisfactory acceptance ratios, especially when the pos-
terior distribution is sharp due to a large amount of data. It is
much more efficient, we have found, to make moves on the
logarithmic scale of �. Below we describe this method.

Our method uses the Metropolis-Hastings algorithm
�23,24� which consists of two parts, proposing a move

� = ��1, . . . ,�K� → �� = ��1�, . . . ,�K� � �A26�

and accepting/rejecting the move based on

R =
p�� ← ���q����
p��� ← ��q���

, �A27�

where p���←�� is the proposal probability density and
q��� is the distribution that we want to sample from, i.e.,
q���= f �n����. The move is accepted with the probability of
min�1,R�.

To generate a move, we randomly choose a state �without
loss of generality, assume the first state was chosen�, draw a
random number � from a distribution g���, and compute ��
as

�1� =
e��1

e��1 + 1 − �1
,

�28�

� j� =
� j

e��1 + 1 − �1
for j � 1.

Notice that this amounts to making a move of � in ln �1
followed by normalization � j� j =1. A simple choice for g���
is the uniform distribution between −� and +�; the value of
� is to be determined by trial and error such that a good
acceptance ratio is obtained.

Under this movement scheme, the proposal probabilities
are not symmetric, p���←���p��←���, and do not get
canceled out in Eq. �A27�. Therefore, we need to calculate
the ratio p��←��� / p���←��. We start by writing the
proposal probability as

p��� ← ��d�1� ¯ d�K−1�

= g���d��
j=2

K−1 ��� j� −
� j

e��1 + 1 − �1
�d� j�� .

�A29�

Notice that � determines �1�, which in turn determines
�2� , . . . ,�K� ; hence the delta functions. Also notice that there is
no delta function assigned to �K� because it is already deter-
mined by the normalization � j� j�=1; effectively, we are deal-
ing with moves on a K−1 dimensional space. From Eq.
�A28�, we obtain

� = ln
�1��1 − �1�
�1�1 − �1��

,

�A30�

d� =
d�1�

�1��1 − �1��

which is used to eliminate � from Eq. �A29�. After
eliminating �, we find
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p��� ← �� = gln
�1��1 − �1�
�1�1 − �1��

� 1

�1��1 − �1��

��
j=2

K−1

�� j� −
� j�1 − �1��

1 − �1
�

= gln
�1��1 − �1�
�1�1 − �1��

� �1 − �1�K−2

�1��1 − �1��

��
j=2

K−1

��� j��1 − �1� − � j�1 − �1��� . �A31�

The ratio is thus given as

p�� ← ���
p��� ← ��

= �gln
�1�1 − �1��
�1��1 − �1�

�� gln
�1��1 − �1�
�1�1 − �1��

��
�

�1��1 − �1��
K−1

�1�1 − �1�K−1 , �A32�

where the delta functions have been cancelled out because

they are even functions. If g�¯� is also an even function, we
get a simpler formula

p�� ← ���
p��� ← ��

=
�1��1 − �1��

K−1

�1�1 − �1�K−1 �A33�

which, by generalization, becomes

p�� ← ���
p��� ← ��

=
�i��1 − �i��

K−1

�i�1 − �i�K−1 �A34�

when state i is selected for a move. This completes our
Monte Carlo sampling technique. In practice, in view of the
issue of numerical precision, it is advantageous to calculate
L� ln R first, instead of R. If L�0, the proposed move is
accepted; if L�0, it is accepted with the probability of eL.
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